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I. Purpose
The environmental impact of aviation is enormous given

the fact that in the US alone there are nearly 6 million
flights per year of commercial aircraft. This situation has
driven numerous policy and procedural measures to help
develop environmentally friendly technologies which are
safe and affordable and reduce the environmental impact
of aviation. However, many of these technologies require
significant initial investment in newer aircraft fleets and
modifications to existing regulations which are both long
and costly enterprises. Additionally, there is a need for
detailed characterization of the situations under which
fuel consumption anomalies are more likely so that we
can target our limited resources toward remedies that will
have the highest impact. As a step toward this latter
need, we demonstrate a comprehensive anomaly detection
method based on Virtual Sensors (VS) to help detect
overconsumption of fuel in aircraft. VS are algorithms
that perform statistical estimation of one sensor mea-
surement given other potentially non-linearly correlated
sensor measurements. Our method relies only on the data
recorded during flight of existing commercial aircraft and
related operational information. In this paper, we describe
and study the results of our approach to analyzing and
detecting overconsumption where actual fuel consumption
is compared to the statistically expected consumption.

II. Background
Commercial aircraft use a significant amount of fuel

which account for a large percentage of the total operating
costs of a commercial airline—some reports estimate as
high as 30%—and means that the overall “carbon foot-
print” of the aviation system is substantial. Improvement
in the fuel efficiency of these aircraft can have significant
environmental and economic benefits to airline operators,
airframe and engine manufacturers, and the public at
large. Because fuel consumption represents such a large
part of the operating cost for an airline, it is monitored
and controlled very carefully through several procedures.
These procedures essentially compare the total fuel con-
sumed on a particular leg of a trip against other trips
which have the same origin, destination, take-off weight,

make-and-model of aircraft (and engine), flight time and
durations of the phases of flight (such as take-off, cruise,
descent, and landing), and other contextual factors. If a
particular aircraft uses more fuel than expected, it may
be targeted for maintenance and further investigation. We
have seen in earlier work that there can be a wide degree of
variability in the total fuel consumption for a particular
aircraft on a given trip even after taking the previously
identified factors into account. This variability poses a
challenge and results in a classic signal-to-noise issue: is
the observed high fuel usage within a specific flight truly
high or just due to noise?

Excessive fuel consumption in jet engines not only leads
to excessive expense, but also lead to increased carbon
emissions. A typical Boeing 747 can carry nearly 184,000
liters of fuel. With a conservative assumption that 90%
of the fuel is converted into carbon dioxide, and assuming
a fuel density of 0.81 kg/l, we can estimate that a single
Boeing 747 can emit as much as 134,000 kg of carbon into
the high atmosphere during a long range flight. It is clear
that when such emissions are multiplied by the number of
aircraft in world-wide operation (estimated to be around
15,000 aircraft according to the Intergovernmental Panel
on Climate Change (IPCC) [1], the environmental impact
is substantial, especially due to the emissions being de-
posited at such high altitude [2].

III. Approach
We approach this problem using a regression models,

which are designed to predict the value of one continuous
variable given a set of other discrete and continuous
variables. These models are extremely powerful and are
used in numerous applications including finance, the social
sciences, medicine, engineering systems, and related areas.
The predictions are based on a model that is learned from
training data that can then be applied to a test data set.
Using a regression model, we predict the instantaneous fuel
consumption of an aircraft given a vector of continuous
and discrete variables that are measured concurrently.
Although this paper presents the use of a concurrent state
vector, the approach presented here generalizes to state
vectors formed with information from the current time



as well as past times. This input vector represents the
instantaneous state of the aircraft. The intuition behind
this model is that the fuel consumption may be a complex
function of the state that can be learned from the data
given an appropriate regression model. An issue that arises
in this procedure is that we assume that the FOQA data
used for training the models are from aircraft operating in
nominal conditions. However, it could be that some subset
of the training data could be from aircraft operating in
off-nominal conditions. Throughout this text, we refer to
nominal conditions as those that are according to plan or
design, in consonance with the language used in aerospace
engineering. We address this problem by requiring that we
have a large number of flights for the same make and model
of aircraft for a given city pair (origin and destination
airport). The assumption that we make is that while a
subset of the data may have off nominal characteristics,
the vast majority operate in a nominal condition. We
believe this assumption is valid because of the high degree
of emphasis on tracking fuel consumption in modern fleets.
Thus, any anomalies detected would be present in a small
minority of flights.

We pose the problem as a regression problem where the
input variables are the ones that affect fuel flow (such as
airspeed, altitude, mass etc) and target variable is the
instanteneous fuel flow. The overall approach described
here is called Virtual Sensors, because we are developing
an estimator of one sensor measurement (fuel consump-
tion) given other potentially nonlinearly correlated sensor
measurements. In the next few sections we describe our
proposed distributed Support Vector Regression algorithm
ParitoSVR, which is a Parallel Iterated Optimizer for
Support Vector Regression in the Primal, that has been
designed specifically for scaling the VS-based fuel con-
sumption modeling to extremely large data sets, that was
a bottleneck in the past study.

A. ADMM and SVR

Our ParitoSVR algorithm uses as a building block
two components: (1) SVR and (2) Alternating Direction
Method of Multipliers (ADMM). In this section, we discuss
these two topics.
SVR: Support vector machine [3] is a powerful tool for a
wide variety of regression and classification tasks, yielding
good predictive performance on many datasets. In this
section, we present a brief introduction to support vector
regression.

Give m data tuples (training set) D = (xi, yi)m
i=1, where

xi ∈ Rn is the input and yi ∈ R is the corresponding
output or target, SVR solves the following optimization
problem:

min
w,b

[
λ||w||2 +

m∑
i=1

`ε(w · xi + b− yi)
]

(1)

Fig. 1. ε-insensitive loss function

where λ is a constant and `ε is the ε-insensitive loss
function defined as, `ε(r) = max(|r| − ε, 0). In this formu-
lation our goal is to find a function f(x) that has at most ε
deviation from the actually obtained targets yi for all the
training data, and at the same time is as fast as possible.
In other words, we do not care about errors as long as they
are less than ε, but will not accept any deviation larger
than this, where ε is set to trade off between minimizing
error (for which lower values are preferred) and reducing
overfitting (for which higher values are preferred). Figure
1 shows the nature of this function. As can be seen, this is
a convex optimization problem which can be solved using
convex optimization solvers such as CVX1.
ADMM: ADMM [4] is a decomposition algorithm for
solving separable convex optimization problems of the
form:

min
x,y

G1(x) +G2(y) (2)

subject to Ax− y = 0, x ∈ Rn, y ∈ Rm

where A ∈ Rm×n and G1 and G2 are convex functions.
ADMM is an iterative technique and the update equations
are:

xt+1 = min
x

{
G1(x) + ρ/2

∥∥Ax− yt + pt
∥∥2

2

}
yt+1 = min

y

{
G2(y) + ρ/2

∥∥Axt+1 − y + pt
∥∥2

2

}
pt+1 = pt +Axt+1 − yt+1

where p = (1/ρ)z. ADMM effectively decouples the x and
y updates such that parallel execution becomes possible.
In a distributed computing framework, this becomes even
more interesting since each computing node can now solve
a (smaller) subproblem in x independently, and then,
these solutions can be efficiently gathered to compute the
consensus variable y and the dual variable p. ADMM
converges within a few iterations when moderate precision
is required. This can be particularly useful for many large
scale problems, similar to what we consider here.

In the next section we show how to build SVR models
for very large datasets using distributed computing via the
ADMM technique.

IV. ParitoSVR formulation
For the linear ParitoSVR algorithm setup, we assume

that the training data is distributed among N client
1http://cvxr.com/cvx/



processors (nodes) P1, . . . , PN with a central machine P0
acting as the server or collector. The dataset at ma-
chine Pj , denoted by Dj , consists of mj data points i.e.
Dj =

{
x(j)

i , y
(j)
i

}mj

i=1
. It is assumed that the datasets are

disjoint: Di

⋂
Dj = ∅ and

⋃N
j=1 Dj = D, where D is the

total (global) data set. The goal is to learn a linear support
vector regression model on D without exchanging all of the
data among all the nodes.

Given Eqn. 1, the optimization problem is now:

min
w

[
m∑
i=1

`ε(w · xi − yi) + λ||w||2
]

⇔ min
w

[
N∑
j=1

mj∑
i=1

`ε

(
w · x(j)

i − y
(j)
i

)
+ λ ‖w‖2

]
The inner sum can be computed by each node indepen-
dently (assuming that w is known). We next write it in a
form such that it is decoupled across the nodes:

min
w1,...,wN ,z

[
N∑
j=1

mj∑
i=1

`ε

(
wj · x

(j)
i − y

(j)
i

)
+ λ ‖z‖2

]
(3)

subject to wj = z

In the ADMM decomposition, each node can solve its local
problem using its own data and optimization variable and
then coordinate the results across the nodes to drive them
into consensus. The nodes update the consensus variable
z iteratively, based on their local data and scatter-gather
operations on z until they converge to the same result.

Theorem 4.1: The ADMM update rules for the linear
support vector regression primal optimization are:

wt+1
j = min

wj

{ mj∑
i=1

`ε

(
wj · x

(j)
i − y

(j)
i

)
+
ρ

2

∥∥wj − zt − utj
∥∥2

2

}
zt+1 = min

z

{
λ ‖z‖2

2 +
Nρ

2

∥∥z−wt+1 − ut
∥∥2

2

}
ut+1
j = utj + wt+1

j − zt+1

where u ∈ Rn is the (scaled) dual variable and wt+1 and
ut+1 are the averages of the variables over all the nodes.

The w update can be executed in parallel for each
machine. It involves solving a convex optimization problem
in n+1 variables at each node. This solution depends only
on the data available at that partition. The z update step
involves computing the average of the w and u vectors in
order to combine the results from the different partitions.
Critical to the working of ADMM is the convergence
criteria. The primal and dual residuals can be written as:
rt

p = ‖wt − zt‖2
2 and

rt
d =

∥∥ρ(zt − zt−1)
∥∥

Also, given the thresholds εpri and εdual, the primal and
dual thresholds can be written as,
εpri = εabs

√
m+ εrel max(‖w‖ , ‖z‖) and

εdual = εabs
√
m+ ρεrel ‖u‖ .

The iterations terminate when rt
p < εpri and rt

d < εdual.
The pseudo code of the ParitoSVR for the linear case

is presented in Alg. 1, Alg. 2, and Alg. 3. Alg. 1 is

the driver which calls the ADMM Linear SVR rou-
tine to split the data into N chunks. It then calls the
RunDistributedJob function in parallel for these N
subproblems to find the w minimizer. Then it aggregates
the results and updates the z and u variables. This process
is repeated until the primal and dual residuals fall below
the thresholds or the total number of iterations exceed
MAXITER.

——————————————————————

Input: D, ε, λ, ρ, N , MaxIter
Output: w of the SVR model
Initialization: Initialize z0, u0

Split D into D1, . . . , DN ;
Call ADMM Linear SVR(D1, . . . , DN , ε, λ, ρ, N ,
MaxIter)

Algorithm 1: Linear ParitoSVR

Procedure ADMM Linear SVR(D1, . . . , DN , ε, λ, ρ, N ,
MaxIter)
forall the t=1 to MaxIter do

forall the j=1 to N do
wt
j = RunDistributedJob(Dj , ε, λ, ρ, ut−1, zt−1);

end
zt = Nρ

2λ+Nρ

(
wt + ut

)
;

forall the j=1 to N do
utj = ut−1

j + wt
j − zt;

end
if rtp < εpri and rtd < εdual then

break;
end

end
Return w

Algorithm 2: Procedure ADMM Linear SVR

Procedure RunDistributedJob(D, ε, λ, ρ, ut−1, zt−1)
D = {xi, yi}

mj

i=1

w = min
w

{ mj∑
i=1

`ε (w · xi − yi) + ρ

2
∥∥w− zt−1 + ut−1∥∥2

2

}
Return w

Algorithm 3: Procedure RunDistributedJob

A. ParitoSVR performance
ParitoSVR has been implemented in MATLAB 2011b.

The experiments have been executed in a 64-bit Linux
cluster consisting of 16 slave nodes where each node is
a dual processor 1-U server containing two quad-core
Intel Xeon 2.66GHz processors totaling 128 cores and
128GB Ram (1Gb/Core). For solving the convex problems
at each iteration, we have used the convex optimization
toolbox CVX for Matlab2. For evaluating the accuracy of
prediction of our algorithm, we have measured the RMSE

2http://cvxr.com/cvx/



metric on the test dataset defined as:

1
max
i=1:m

yi

√√√√ 1
m

m∑
i=1

(f(xi)− yi)

Fig. 2 shows the sample dataset generated from a linear
model following y = w×x +noise, where w is the weight
of the regression model. We have used 2 nodes in this
experiment and, for each node, chosen a different w vector
so that each node sees a different data distribution. The
data of the two nodes are shown in two different colors
(circle and plus markers). Also shown in the figure are
the models (straight lines) formed by node 1 at different
iterations of ParitoSVR algorithm. As seen, the algorithm
updates the model as iterations proceed. For comparison,
we have also plotted the centralized model formed by the
union of all the data. As clearly shown, the ParitoSVR
model in the final iteration is very close to the model
formed by the centralized model. Note that, at conver-
gence, all nodes have the same model. Fig. 2(b) shows
the primal and dual residuals (rp and rd) in solid blue
lines and the primal and dual thresholds εpri and εdual in
red dotted lines. Fig. 2(c) shows the objective values for
different iterations of the algorithm. For this experiment,
we have used the following values of the parameters:
ε = 10, λ = 1, εpri = 10−4, εdual = 10−2. The values of
these parameters are chosen to optimize the running time
(convergence) as well as accuracy of results based on trial
and error.

V. Results

We use ParitoSVR algorithm to detect anomalous fuel
consumption in a fleet of commercial aircraft from an
European carrier that we call Carrier X. We model the
average fuel flow as a function of 29 different parameters
that are listed below:

• left and right ailerons
• left and right elevators
• rudder
• stabilizer
• roll, pitch, and side-slip angles
• angle-of-attack
• mach number
• left and right engine thrust
• lateral, vertical, and longitudinal velocities
• lateral, vertical, and longitudinal accelerations
• gross weight
• altitude
• wind speed and direction
• aileron differential
• roll and pitch rate
• roll and pitch acceleration
• dynamic pressure
Based on domain expert feedback, these parameters are

expected to influence fuel flow the most. The study that

we conducted is based on tail numbers. The target variable
for us is the average fuel flow in the two engines.

The fuel flow anomaly detection study has been de-
signed based on tail numbers. For the last 6 month period
of flights, for each tail number we train on the first three
months of data and we test on the remaining 3 months. We
get rid of anomalous flights in the training data by running
the model on the training set and identifying all flights
that have a mean error (instantaneous RMSEs averaged
over all time instances for a flight) higher than the 3-σ
bounds for error for that tail number. Also, given that
the profiles for the different flight phases are significantly
different from one another, our hypothesis is that the fuel
flow models corresponding to the different phases will be
significantly different from each other. Therefore, in this
study, we focus only on the cruise phase of flights.

In our data set there are a total of 188 tail numbers
with at anywhere between 440 to 560 flights in the training
period (first three months of data) and approximately 400
to 500 flights in the test period (last three months of the
observation data). For every tail number, once we build the
model, we test the remaining flights for instantaneous fuel
flow predictions using the model. We then compute the
RMSE for every prediction for a flight. We then compute
the mean RMSE and the standard deviation (σ) of RMSE
across all flights. Anomalous flights are those for which
the mean RMSE over all time instances is outside the 3-σ
bound for the error distribution. For the 188 tail numbers
that we study, the number of anomalous flights for any tail
number varies anywhere between 1 to 14 anomalies based
on the 3-σ condition violation. In this report we present
the results for one of those 188 tail numbers which has the
most anomalies.

Out of 495 test flights over a 3-month period, 14 flights
were determined to be anomalous. Figure 3(a) shows the
mean squared errors for each of the flights in blue and the
3-σ bounds in magenta. The instantaneous fuel flow for
the top ranked anomalous flight among these 14 flights is
shown in Figure 3(b). The red graph depicting observed
fuel flow is significantly higher than the predicted fuel
consumption, shown in blue. Fig.3(c) shows the same for
a normal flight.

Figure 4 shows the distribution of the 29 parameters for
the nominal test flights as opposed to the 14 anomalous
test flights. It is somewhat obvious that for certain param-
eter combinations, the distribution of parameters deviate
from that of the nominal flights. On further investigation it
was revealed that the airspeed, gross weight, and altitude
configurations for the 14 anomalous flights are clearly,
distinct from the rest of the nominal flights. Figure 5
shows these configurations in a scatter plot against those of
the nominal flights. On further analysis of the anomalous
flights it was also revealed that out of the 14 flights,
the top anomalous flight was probably a grounded flight
since its origin and destination airport was the same. An
earlier flight on the same day has also been detected as
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Fig. 2. (a) Synthetic dataset. Also shown are the models formed by node 1 as the algorithm progresses. (b) Primal and dual residuals (blue
solid line) for different iterations of ParitoSVR algorithm. The red dotted lines show the εpri and εdual. (c) Change in objective value with
different iterations.
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(b) Outlier flight fuel consumption
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Fig. 3. Fuel flow study on CarrierX dataset. Fig. (a) shows squared error for all test flights, the 3-σ bound and flights which cross the
threshold. Fig. (b) shows the observed and predicted fuel flow of top ranked anomalous flight. Fig. (c) shows the same for a normal flight.

an anomaly. Similarly there are two other pairs of flights
that have been reported in the top 14 anomalies that flew
consecutive flights on the same day or in two consecutive
days to the same airport pairs. We are currently working
with the airlines to identify additional information so that
we can make a decision in terms of the root causes for these
anomalous fuel consumptions in these flights. It needs to
be investigated whether it was pilot or air traffic controller
decisions, or mechanical issues, or external conditions
such was weather that was responsible for the excess fuel
consumption in these flights compared to other flights for
the same tail numbers.
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VI. Conclusion and future work
In this report we describe ParitoSVR — a parallel iter-

ated optimizer based support vector regression technique
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Fig. 5. Joint distribution of gross weight, altitude, and airspeed parameters for the test flights. Red dots indicate identified anomalies. Blue
dots are all other test flights.

that uses Virtual Sensors technology for identifying flights
that consume more than nominal fuel. The algorithm is
highly parallelizable and therefore leads to good scalabil-
ity on very large aviation datasets. Unlike many related
approaches, we solve the actual optimization problem in
the primal, leading to very low error rates. However,
analyzing the anomalies for root cause identification is
still a challenge and requires human intervention at every
step. As part of future work, we plan to develop a suite
of technique that would allow us to localize the variables
which cause the anomalous behavior. We also plan to
extend the method to learn non-linear kernel based SVR
which might improve accuracy due to better modeling.
Finally, we would like to run a through study for com-
paring the performance of ParitoSVR with the ensemble
based method developed during phase 1 of this project and
identify the strengths of each method.
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